Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones ${ }^{\text {a }}$ and Piotr Kus ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Department of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.024$
$w R$ factor $=0.054$
Data-to-parameter ratio $=24.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,5-Dibromo-2,6-dimethyInaphthalene

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{2}$, displays crystallographic inversion symmetry and is essentially planar. Bond lengths show the typical naphthalene pattern. The crystal packing shows no short $\mathrm{H} \cdots \mathrm{Br}, \mathrm{Br} \cdots \mathrm{Br}$ or $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts.

Comment

The electrophilic bromination of 2,6-dimethylnaphthalene in tetrachloromethane in the presence of iron leads to the title compound, (I), in very good yield (ca 90%). This compound is also present (as a contaminant) on monobromination of 2,6dimethylnaphthalene (Veselý \& S̆tursa, 1932; Gore \& Yusuf, 1971). It has been used as a starting material for the synthesis of naphthodifuran, which can be used in Diels-Alder reactions or to prepare chrysene derivatives and some interesting cyclophanes (Thibault et al., 2003; Blank \& Haenel, 1983). Its spectroscopic characterization was described by Casarini et al. (1991). In view of our interest in the structure of brominesubstituted naphthalenes (unpublished results), we decided to determine the crystal structure.

(I)

The molecule is shown in Fig. 1; it displays crystallographic inversion symmetry and is thus essentially planar except for the methyl H atoms. Bond lengths and angles may be regarded as normal, e.g. the typical naphthalene bond-length pattern.

The crystal packing (Fig. 2) is surprisingly devoid of short contacts. The shortest $\mathrm{H} \cdots \mathrm{Br}$ contact is $\mathrm{H} 3 \cdots \mathrm{Br}(x, 1-y$, $\frac{1}{2}+z$) of $3.20 \AA$ and the shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact is given by the b-axis repeat of $4.01 \AA$. There are no short $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. Adjacent molecules in Fig. 2 are displaced in height with respect to each other and subtend an interplanar angle of $55.88(6)^{\circ}$.

Experimental

The title compound was synthesized, starting from 2,6-dimethylnaphthalene, according to the method of Veselý \& Štursa (1932). It crystallizes well from the reaction mixture, but as needles unsuitable for structure determination. The analytical and spectroscopic data are consistent with the literature (Casarini et al., 1991). Single crystals

Received 15 March 2005 Accepted 17 March 2005 Online 9 April 2005
were grown by slow evaporation of a chloroform solution. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.18(d, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.40(d, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $2.62(s, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 24.13,124.09,126.49$, 129.92, 132.09, 136.02.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{Br}_{2}$
$M_{r}=314.02$
Monoclinic, $C 2 / c$
$a=20.543(3) \AA$
$b=4.0082(8) \AA$
$c=12.813(2) \AA$
$\beta=95.497(6)^{\circ}$
$V=1050.2(3) \AA^{3}$
$Z=4$

$$
D_{x}=1.986 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=314.02$
Monoclinic, $C 2 / c$
$a=20.543$ (3) \AA
b 4.0082 (8) A
Mo $K \alpha$ radiation
Cell parameters from 4270
reflections
$\theta=2.7-30.7^{\circ}$
$\mu=7.67 \mathrm{~mm}^{-1}$
$T=133$ (2) K
Prism, colourless
$0.22 \times 0.11 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.383, T_{\text {max }}=0.541$
8223 measured reflections

> 1597 independent reflections
> 1327 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.028$
> $\theta_{\max }=30.5^{\circ}$
> $h=-28 \rightarrow 28$
> $k=-5 \rightarrow 5$
> $l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.054$
$S=1.08$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0241 P)^{2}\right. \\
\quad+1.2229 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.48 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{-3.54 \mathrm{e} \AA^{-3}}
\end{aligned}
$$

65 parameters
H -atom parameters constrained

Figure 1
The molecule of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 50% probability level. H-atom radii are arbitrary. [Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.]

Figure 2
Packing of the title compound, viewed parallel to the short b axis. H atoms have been omitted.

Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Casarini, D., Lunazzi, L. \& Sqarabotto, P. (1991). J. Crystallogr. Spectrosc. Res. 21, 445-450.
Gore, P. H. \& Yusuf, M. (1971). J. Chem. Soc. C, pp. 2586-2590.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thibault, M. E., Closson, T. L. L., Manning, S. C. \& Dibble, P. W. (2003). J. Org. Chem. 68, 8373-8378.
Veselý, V. \& S̆tursa, F. (1932). Collect. Czech. Chem. Commun. 4, 21-31.

