Received 15 March 2005 Accepted 17 March 2005

Online 9 April 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter G. Jones^a* and Piotr Kus^b

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bDepartment of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 133 K Mean σ (C–C) = 0.003 Å R factor = 0.024 wR factor = 0.054 Data-to-parameter ratio = 24.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1,5-Dibromo-2,6-dimethylnaphthalene

The molecule of the title compound, $C_{12}H_{10}Br_2$, displays crystallographic inversion symmetry and is essentially planar. Bond lengths show the typical naphthalene pattern. The crystal packing shows no short $H \cdots Br$, $Br \cdots Br$ or $C - H \cdots \pi$ contacts.

Comment

The electrophilic bromination of 2,6-dimethylnaphthalene in tetrachloromethane in the presence of iron leads to the title compound, (I), in very good yield (*ca* 90%). This compound is also present (as a contaminant) on monobromination of 2,6-dimethylnaphthalene (Veselý & Štursa, 1932; Gore & Yusuf, 1971). It has been used as a starting material for the synthesis of naphthodifuran, which can be used in Diels–Alder reactions or to prepare chrysene derivatives and some interesting cyclophanes (Thibault *et al.*, 2003; Blank & Haenel, 1983). Its spectroscopic characterization was described by Casarini *et al.* (1991). In view of our interest in the structure of bromine-substituted naphthalenes (unpublished results), we decided to determine the crystal structure.

The molecule is shown in Fig. 1; it displays crystallographic inversion symmetry and is thus essentially planar except for the methyl H atoms. Bond lengths and angles may be regarded as normal, *e.g.* the typical naphthalene bond-length pattern.

The crystal packing (Fig. 2) is surprisingly devoid of short contacts. The shortest $H \cdots Br$ contact is $H3 \cdots Br(x, 1 - y, \frac{1}{2} + z)$ of 3.20 Å and the shortest $Br \cdots Br$ contact is given by the *b*-axis repeat of 4.01 Å. There are no short $C-H \cdots \pi$ interactions. Adjacent molecules in Fig. 2 are displaced in height with respect to each other and subtend an interplanar angle of 55.88 (6)°.

Experimental

The title compound was synthesized, starting from 2,6-dimethylnaphthalene, according to the method of Veselý & Štursa (1932). It crystallizes well from the reaction mixture, but as needles unsuitable for structure determination. The analytical and spectroscopic data are consistent with the literature (Casarini *et al.*, 1991). Single crystals

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

were grown by slow evaporation of a chloroform solution. ¹H NMR (CDCl₃, 400 MHz): δ 8.18 (*d*, 2H, *J* = 8.4 Hz), 7.40 (*d*, 2H, *J* = 8.4 Hz), 2.62 (*s*, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 24.13, 124.09, 126.49, 129.92, 132.09, 136.02.

 $D_x = 1.986 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 4270

reflections $\theta = 2.7 - 30.7^{\circ}$

 $\mu=7.67~\mathrm{mm}^{-1}$

T = 133 (2) K

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 30.5^{\circ}$

 $h = -28 \rightarrow 28$

 $k = -5 \rightarrow 5$

 $l = -18 \rightarrow 18$

Prism, colourless

 $0.22\,\times\,0.11\,\times\,0.08~\text{mm}$

1597 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0241P)^2]$

+ 1.2229P] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.54 \text{ e} \text{ Å}^{-3}$

1327 reflections with $I > 2\sigma(I)$

Crystal data

 $\begin{array}{l} C_{12}H_{10}Br_2\\ M_r = 314.02\\ \text{Monoclinic, } C2/c\\ a = 20.543 \ (3) \ \text{\AA}\\ b = 4.0082 \ (8) \ \text{\AA}\\ c = 12.813 \ (2) \ \text{\AA}\\ \beta = 95.497 \ (6)^{\circ}\\ V = 1050.2 \ (3) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\min} = 0.383, T_{\max} = 0.541$ 8223 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.054$ S = 1.081597 reflections 65 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Br-C1	1.9141 (19)	C3-C4	1.371 (3)
C1-C2	1.379 (3)	C4-C5	1.423 (3)
C1-C5 ⁱ	1.426 (3)	C5-C5 ⁱ	1.431 (4)
C2-C3	1.420 (3)		
C2-C1-C5 ⁱ	123.59 (18)	C5 ⁱ -C1-Br	118.40 (14)
C2-C1-Br	118.01 (15)		

Symmetry code: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$.

Methyl H atoms were identified in difference syntheses, idealized and then refined using a rigid methyl group (C-H = 0.98 Å and H-C-H = 109.5°) allowed to rotate but not tip. Other H atoms were included using a riding model, with C-H = 0.95 Å. $U_{\rm iso}({\rm H})$ values were fixed at $1.2U_{\rm eq}({\rm C})$ of the parent C atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

We thank Mr A. Weinkauf for technical assistance.

References

Blank, N. E. & Haenel, M. W. (1983). Chem. Ber. 116, 827-832.

Figure 1

The molecule of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 50% probability level. H-atom radii are arbitrary. [Symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} - y$, 1 - z.]

Figure 2

Packing of the title compound, viewed parallel to the short b axis. H atoms have been omitted.

- Bruker (1998). *SMART* (Version 5.0), *SAINT* (Version 4.0) and *SADABS* (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Casarini, D., Lunazzi, L. & Sqarabotto, P. (1991). J. Crystallogr. Spectrosc. Res. 21, 445–450.
- Gore, P. H. & Yusuf, M. (1971). J. Chem. Soc. C, pp. 2586-2590.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thibault, M. E., Closson, T. L. L., Manning, S. C. & Dibble, P. W. (2003). J. Org. Chem. 68, 8373–8378.
- Veselý, V. & Štursa, F. (1932). Collect. Czech. Chem. Commun. 4, 21-31.